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Abstract
The main question we address in this paper is how to incorporate do-

main knowledge from the developed incident timing plans, with histori-

cal signal engagement records, to learn to recommend contingency sig-

nal patterns for incident-induced congestion. The effectiveness of traf-

fic incident management is often limited by the late response time and

excessive workload of traffic operators. This paper proposes a novel

decision-making framework that learns to recommend incident plans in

advance with the outputs from traffic prediction. Specifically, consider-

ing the scarcity of engagement records for incident plans, we propose to

decompose the end-to-end recommendation task into two hierarchies

– traffic prediction and plan association, and learn their connections

through metric learning, which reinforces partial-order preferences ob-

served from engagement records.

Background
Incident Signal Timing Plans
• Planned or unplanned incidents (e.g. weather, accidents) on the
network can cause catastrophic traffic gridlocks;
• Signals engaged during incident-induced congestion, emergency,
severe winter conditions and holidays;

•Manually entered into system by traffic operators after validating with
real time technology (e.g., cameras, calls, loop detectors)Incident Management Challenges
• Late response time: (1) Overhead from verification of incidents and
determination of signal plans; (2) Lack of advance awareness of road

conditions;

• Excessive workload: Traffic operators need to gather and analyze
incident information from multiple directives (cameras and travel

information platforms)Research Question: Can we improve efficiency by automating the data
analysis process and learns to recommend signal plans even before re-

port of incidents?

Data Sources
1 INRIX Traffic Speed

2 PennDOT RCRS Incident Report

3 Crowdsourced Waze alerts

4 Weather Underground

5 Incident Signal Plan Engagement Records (very few)

Method
We decompose the recommendation task into two subtask models in hi-

erarchy – traffic predictor and signal plan associator, which combinesMa-chine Learning + Domain Knowledge
1 Leverage the imbalance between abundant X (road conditions) and few

Y (engagement records)

2 Sequential Deep Learning for Traffic Prediction for each road segment

30min ahead

3 Encode Domain Knowledge models (VISUM Traffic Simulation) to

recommender key matrix

4 Zero-Shot (Metric) Learning for signal plan recommendation. We learn

the connections through pairwise learning, which reinforces

partial-order preferences observed from historical engagement

records.
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Figure: Incident plan recommendation architecture: traffic predictor is an

encoder-decoder recurrent neural network with attention mechanism. We translate the

plan triggering conditions into a matrix of plan attributes (keys). The plan associator

then generates traffic queries from current and 30-min predicted future speed series

and their closeness with plan keys are evaluated with self-defined metrics.

Metric Learning for Plan Associator: RankLR [1]
min
w

1

P

P∑
i=1

[
yp log(wTxp

ij)) + (1− yp) log(1−wTxp
ij)
]
+ C‖w‖1 (1)

Results
Traffic Predictor
Table: MAPE prediction error of our encoder-decoder-attention model against other

baselines for different prediction horizons on the test samples.

Model 5min 10min 15min 20min 25min 30min

our model 1.54% 1.88% 1.81% 1.47% 1.43% 1.91%
Historical-average 11.73% 11.73% 11.73% 11.73% 11.73% 11.73%

Latest-observation 9.05% 15.80% 18.92% 20.35% 21.22% 21.94%

LASSO 8.05% 13.43% 15.63% 16.02% 17.46% 17.52%

GRU-no-attention 8.13% 11.05% 11.48% 12.30% 13.09% 12.05%

Plan Associator

Figure: Visualization of plan recommender zero-shot model performances: our model

can trigger recommendations 10minutes ahead for plan C, 35minutes ahead for plan F,

30minutes for plan A and 15minutes for plan D.

Discussion
Our proposed framework is expected to give traffic operators signifi-cant time to access the condition and react appropriately. In addition,
our recommender has been shown to effectively recommend unseenplans in training. This generalization property makes our method an ap-
propriate initializer for cold-start recommendation of new incident
plans without engagement records, which may be created recently for

expansion of signalized intersections.
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